Number Base Systems
Decimal(10)
|
Binary(2)
|
Ternary(3)
|
Octal(8)
|
Hexadecimal(16)
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
2
|
10
|
2
|
2
|
2
|
3
|
11
|
10
|
3
|
3
|
4
|
100
|
11
|
4
|
4
|
5
|
101
|
12
|
5
|
5
|
6
|
110
|
20
|
6
|
6
|
7
|
111
|
21
|
7
|
7
|
8
|
1000
|
22
|
10
|
8
|
9
|
1001
|
100
|
11
|
9
|
10
|
1010
|
101
|
12
|
A
|
11
|
1011
|
102
|
13
|
B
|
12
|
1100
|
110
|
14
|
C
|
13
|
1101
|
111
|
15
|
D
|
14
|
1110
|
112
|
16
|
E
|
15
|
1111
|
120
|
17
|
F
|
16
|
10000
|
121
|
20
|
10
|
17
|
10001
|
122
|
21
|
11
|
18
|
10010
|
200
|
22
|
12
|
19
|
10011
|
201
|
23
|
13
|
20
|
10100
|
202
|
24
|
14
|
Each digit can only count up to the value of one less than the base. In hexadecimal, the letters A - F are used to represent the digits 10 - 15, so they would only use one character.
No comments:
Post a Comment